

Quick start guide

XMC7200 evaluation kit KIT_XMC72_EVK

Kit contents

- 1. XMC7200 evaluation board
- 2. USB Type-A to Micro-B cable
- 3. 12V/3A DC power adapter with additional blades
- 4. Six jumper wires (five inches each)
- 5. Quick start guide (this document)

www.infineon.com/KIT_XMC72_EVK

Before you start

- 1. Ensure that you have the following:
 - PC with USB port
 - UART terminal software such as Tera Term or Minicom
- 2. Visit the kit website to download and install the required software.

Connect and power up the board

- 1. Ensure that jumper J10 is at position 2–3 to select 3.3 V.
- 2. Connect the power adapter provided with the kit to the board (J6).
- 3. Connect the KitProg3 USB connector (J7) to your PC.

Connect the kit with the UART terminal software

- Open the UART terminal software and connect to the kit's USB-UART COM port with the following settings:
 - Baud rate: 115200, Data: 8 bit, Parity: None, Stop bit: 1 bit, Flow control: None
- 2. Press the XRES button (SW1) to reset the device.

Run the pre-programmed code example

- Observe the "Hello World!!!" message on the serial terminal and confirm that the three user LEDs blink one after the other.
- Press the Enter key to pause or resume blinking the user LED. Alternatively, use USER BTN1 or USER BTN2 to pause or resume the blinking.
- 3. Follow the instructions on the serial terminal to run other demos.

Next steps

Visit the kit website for information on code examples supported for this kit and kit documentation.

USB cable connected to the KitProg3 USB connector

USB-UART COM port setup

Serial terminal

*** KIT_XMC72_EVK - Running the out-of-the-box (OOB) demo project ** Enter an option from 1 - 7 to run the selected demo:

- 1. Hello world
- PWM square-wave output
 GPIO interrupt
- GPIO interrupt
 SAR ADC basics
- 5. XMC(TM) MCU power modes
- 6. QSPI memory read/write
- 7. CAN FD loopback

Note:

The demos on the serial terminal may differ because of continuous feature enhancements.

XMC7200 evaluation board details

- 1 External power supply VIN connector (J6)
- 2 Power LED (LED5)
- 3 KitProg3 USB connector (J7)
- 4 KitProg3 status LED (LED4)
- 5 512-Mbit serial NOR flash memory (S25FL512S U9)
- 6 KitProg3 programming mode selection button (SW3)
- 7 VBAT power selection jumper (J8)
- 8 XMC7200D VTARG current measurement jumper (J15)
- 9 XMC7200D VDDIO2 current measurement jumper (J12)
- 10 System power (VTARG) selection jumper (J10)
- 11 XMC7200D 20-pin debug and trace header (J17)*
- 12 XMC7200D 10-pin SWD/JTAG program and debug header (J16)
- 13 XMC7200D target I/O current measurement jumper (J14)
- 14 XMC7200D reset button (SW1)
- 15 Potentiometer (R105)
- 16 Potentiometer connection jumper (J18)
- 17 XMC7200D extended I/O headers (J29, J30, J31, J32)*
- 18 M.2 I/O power selection jumper (J27)
- 19 Power header compatible with Arduino Uno R3 (J1)

- 20 Analog-IN header compatible with Arduino Uno R3 (J2)
- 21 SMIF dual header compatible with Digilent Pmod (J21, J22)*
- 22 XMC7200D user buttons (SW2, SW4)
- 23 XMC7200D user LEDs (LED1, LED2, LED3)
- 24 M.2 stand-off (MT1)
- 25 M.2 interface connector (J25)
- 26 XMC7200D microcontroller (XMC7200D-E272K8384 U1)
- 27 VBAT current measurement jumper (J28)
- 28 RJ45 Gigabit Ethernet connector (J23)
- 29 Ethernet physical layer (PHY) transceiver (U22)
- 30 25-MHz crystal for Ethernet transceiver (Y3)
- 31 125-MHz crystal for Ethernet transceiver (Y4)**
- 32 CAN FD resistor termination jumper (J20)
- 33 CAN FD interface connector (J19)
- 34 CAN FD transceiver (TLE9251VSJ U8)
- 35 Digital I/O headers compatible with Arduino Uno R3 (J3, J4)
- 36 KitProg3 programmer and debugger based on PSoC[™] 5LP (CY8C5868LTI-LP039 – U2)

See the kit guide available at the kit website for details.

Note: *Not connected