

EVM3695-20-PJ-00A

16V, 25A, High-Efficiency, Synchronous Step-Down Module Evaluation Board

DESCRIPTION

The EVM3695-20-PJ-00A evaluation board is designed to demonstrate the capabilities of the MPM3695-20, a fully integrated, high-efficiency, synchronous step-down power module with 25A of output current (I_{OUT}).

The MPM3695-20 adopts internally compensated constant-on-time (COT) control to provide fast transient response and ease loop

stabilization. The switching frequency (f_{SW}) can be set from 400kHz to 1MHz. Refer to the MPM3695-20 datasheet for more detailed information.

It is recommended to read the datasheet for the MPM3695-20 prior to making any changes to the EVM3695-20-PJ-00A.

PERFORMANCE SUMMARY (1)

Specifications are at $T_A = 25$ °C

Parameters	Conditions	Value
Input voltage (V _{IN}) range		3V to 16V (2)
Output voltage (Vout)	V_{IN} = 3V to 16V, I_{OUT} = 0A to 25A	1.2V
Maximum output current (Іоит)	V _{IN} = 3V to 16V, V _{OUT} = 1.2V	25A
Full-load efficiency	V _{IN} = 12V, V _{OUT} = 1.2V, I _{OUT} = 25A, f _{SW} = 600kHz	84.24%
Peak efficiency	$V_{IN} = 12V$, $V_{OUT} = 1.2V$, $I_{OUT} = 12A$, $f_{SW} = 600kHz$	89.08%
Default switching frequency (fsw)		600kHz

Notes:

- 1) For different input/output voltage specifications with different output capacitors, the application circuit parameters may require changes.
- 2) When V_{IN} < 4V, an external 3.3V VCC is required.

EVALUATION BOARD

LxWxH (10cmx10cmx1.5cm)

Board Number	MPS IC Number	
EVM3695-20-PJ-00A	MPM3695GPJ-20	

QUICK START GUIDE

The EVM3695-20-PJ-00A is easy to set up to evaluate the performance of the MPM3695-20. Refer to Figure 1 on page 4 for the proper measurement equipment set-up and follow the procedure below.

- 1. Preset the power source (V_{IN}) between 4V and 16V. (3)
- 2. Turn the power source off.
- 3. Connect the power source terminals to:
 - a. Positive (+): VIN
 - b. Negative (-): GND
- 4. Connect the load (the initial load should be no load) terminals to:
 - a. Positive (+): VOUT
 - b. Negative (-): GND 1
- 5. Turn the power supply on after making the connections. The board should automatically start up.
- 6. Check for the proper output voltages from the VOUT S to VOUTGND S turrets.
- 7. Once the proper output voltage (V_{OUT}) is established, adjust the load within the operating range then measure the efficiency, output ripple voltage, and other relevant parameters. (4)
- 8. After completing all tests, adjust the load to 0A, then turn the input power supply off.

Notes:

- 3) Ensure that V_{IN} does not exceed 16V.
- 4) When measuring the output or input voltage ripple, do not use the long ground lead on the oscilloscope probe.

3

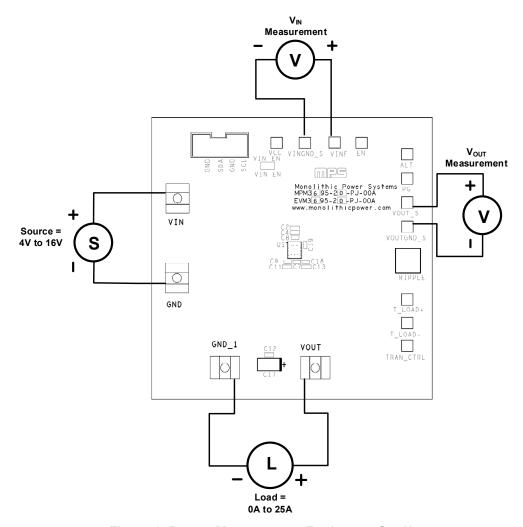


Figure 1: Proper Measurement Equipment Set-Up

EVALUATION BOARD SCHEMATIC

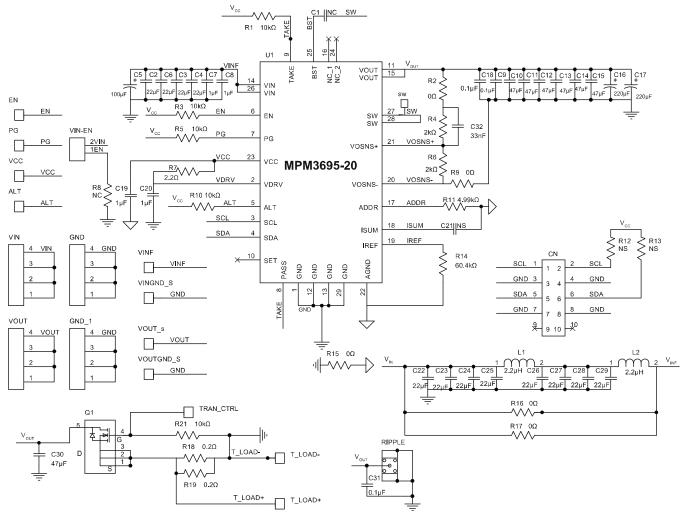
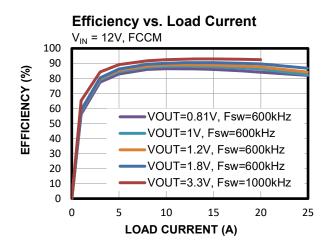
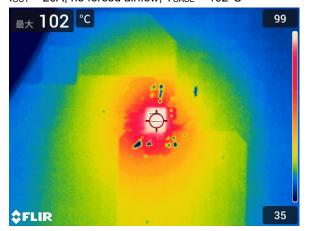


Figure 2: Evaluation Board Schematic

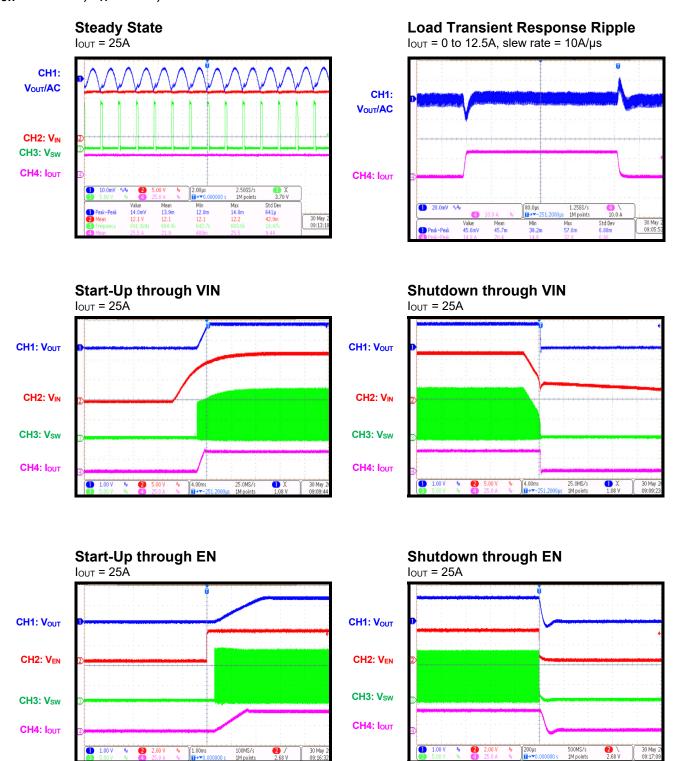

EVM3695-20-PJ-00A BILL OF MATERIALS

Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer PN
4	C2, C3, C4, C6	22µF	Capacitor, 25V, X7R, 0805	C0805	Murata	GRM21BR61E226 ME44L
1	C5	100µF	100µF, 25V, OSCON, E7	OSCON E7	Panasonic	25SVPF100M
4	C7, C8, C19, C20	1µF	Ceramic capacitor, 25V, X7R	C0603	Murata	GRT188R71E105K E13D
2	C9, C18	0.1μF	Capacitor, 25V, X7R, 0603	C0603	Wurth	885012206071
6	C10, C11, C12, C13, C14, C15	47µF	Ceramic capacitor, 10V, X5R	C0805	Murata	GRM21BR61A476 ME15L
2	C16, C17	220µF	Tantalum capacitor, 6.3V, 15mΩ	SMD	Panasonic	EEFCX0J221R
1	C32	33nF	Ceramic capacitor, 25V, X7R	C0603	Murata	GRM188R71E333 KA01D
1	CN	10-pin	I ² C connector	DIP	Wurth	612010235121
4	R1, R3, R5, R10	10kΩ	Film resistor, 1%, 0603	R0603	Yageo	RC0603FR- 0710KL
3	R2, R9, R15	Ω0	Film resistor, 1%, 0603	R0603	Yageo	RC0603FR- 070RKL
2	R4, R6	2kΩ	Film resistor, 1%, 0603	R0603	Yageo	RC0603FR-072KL
1	R7	2.2Ω	Film resistor, 1%, 0603	R0603	Yageo	RC0603FR- 072R2L
1	R11	4.99kΩ	Film resistor, 1%, 0603	R0603	Yageo	RC0603FR- 074K99L
1	R14	60.4kΩ	Film resistor, 1%, 0603	R0603	Yageo	RC0603FR- 0760K4L
2	R16, R17	0Ω	Film resistor, 1%, 2512	R2512	Yageo	RC2512FK-070RL
1	VIN-EN	2.54mm	CN2, 2-pin,	DIP	Wurth	61300211121
1	U1	MPM3695- 20	16V, 25A, step-down power module	ECLGA-29 (5mmx 6mmx 4.4mm)	MPS	MPM3695GPJ-20



EVB TEST RESULTS

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 12V, V_{OUT} = 1.2V, f_{SW} = 600kHz, T_A = 25°C, unless otherwise noted.


Thermal Performance (T_A = 28°C) I_{OUT} = 20A, no forced airflow, T_{CASE} = 102°C

EVB TEST RESULTS (continued)

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 12V, V_{OUT} = 1.2V, f_{SW} = 600kHz, T_A = 25°C, unless otherwise noted.

PCB LAYOUT

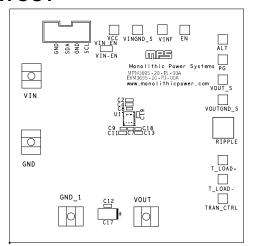


Figure 3: Top Silk

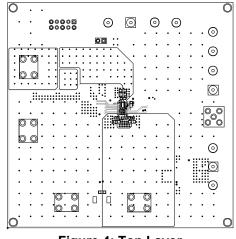


Figure 4: Top Layer

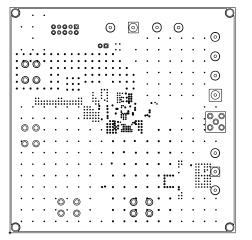


Figure 5: Mid-Layer 1

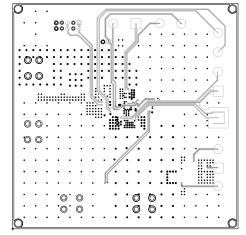


Figure 6: Mid-Layer 2

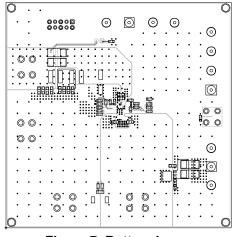


Figure 7: Bottom Layer

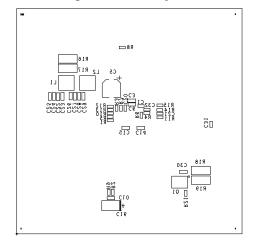


Figure 8: Bottom Silk

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	11/3/2023	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.